It is estimated that by the year 2050, virtually 80% of the world’s population will live in urban areas and the total global population will increase by approximately 3 billion people. An enormous amount of farmland may be required, conditional on the change in yield per hectare and sustainable practices implemented, to feed the growing population. Scientists around the world are concerned that this large amount of required land will not be available and that severe damage to the earth will be caused by the added farmland. Vertical farms, if designed correctly utilizing sustainable principles, may eliminate the need to create additional farmland and help create a cleaner environment, by reducing the transportation of food to the mass population.
Vertical farming is a highly debated concept, one which proposes that it is economically and environmentally viable to cultivate plant or animal life within tall buildings (skyscrapers), purpose-built multi-level structures, or vertically inclined surfaces. The following short video, titled "Designing the Vertical Farm" demonstrates how vertical farming structures could be designed and functionally exist in our developing world.
The idea of a vertical farm has existed for nearly six decades and numerous built precedents are well documented by John Hix in his authoritative text "The Glass House". The writing is a comprehensive survey of glasshouses, tracing the evolution of glass enclosures from the mid 16th century, when the desire to nurture exotic plants in often hostile climates led to the development of the glasshouse and the ingenious mechanical servicing systems, capable of creating their own artificial micro-climates. Through the technical advances in the early 19th century, large-scale structures were constructed, initially for private individuals and botanical societies. During the mid 19th century, with the advent of mass production and specialized component systems, the fashioning of modular structures became possible.
Irrespective of their origins, there are three classifications debated by contemporary scholars:
1) The first category of vertical farming was established, nearly a century ago, in 1915 by Gilbert Ellis Bailey, who also coined the phrase "vertical farming". In his book "Vertical Farming", Bailey defined the earliest meanings and methods of vertical farming as "the keynote of a new agriculture that has come to stay, for inexpensive explosives enable the farmer to farm deeper, to go down to increase area, and to secure larger crops. Instead of spreading out over more land he concentrates on less land and becomes an intensive rather than an extensive agriculturist, and soon learns that it is more profitable to double the depth of his fertile land than to double the area of his holdings, and he learns that his best aid and servant in this work is a good explosive. Peace congresses demand that swords be turned into pruning hooks. The farmer is busy turning explosives from war to agriculture, from death dealing to life giving work".
2) The second category of vertical farming was defined by American ecologist Dr. Dickson Despommier, arguing that vertical farming is legitimate due to environmental reasons. He claims that the cultivation of plant and animal life within skyscrapers will produce less embedded energy and toxicity than plant and animal life produced on natural landscapes. He also claims that natural landscapes are too toxic for natural, agricultural production, despite the ecological and environmental costs of extracting materials to build skyscrapers for the simple purpose of agricultural production. According to Despommier, vertical farming thus discounts the value of natural landscape in exchange for the idea of "skyscraper as spaceship". Plant and animal life are mass-produced within hermetically sealed, artificial environments that have little to do with the outside world. In this sense, they could be built anywhere regardless of the context. This is not advantageous to energy consumption, as the internal environment must be maintained to sustain life within the skyscraper. Despommier's concept of "The Vertical Farm" emerged in 1999 at Columbia University. It promotes the mass cultivation of plant and animal life for commercial purposes in skyscrapers. Using advanced greenhouse technology such as hydroponics and aeroponics, the skyscrapers could theoretically produce fish, poultry, fruit and vegetables. While the concept of stacked agricultural production is not new, scholars claim that a commercial high-rise farm such as 'The Vertical Farm' has never been built, yet extensive photographic documentation and several relevant historical books suggest that research on the subject was not diligently pursued. New sources indicate that a tower hydroponicum existed in Armenia prior to 1951. Proponents argue that, by allowing traditional outdoor farms to revert to a natural state and reducing the energy costs needed to transport foods to consumers, vertical farms could significantly alleviate climate change produced by excess atmospheric carbon. Critics have noted that the costs of the additional energy needed for artificial lighting, heating and other vertical farming operations would exceed the benefit of the building’s close proximity to the areas of consumption.
3) The third category of vertical farming denotes the concepts proposed and built by architect Ken Yeang developed at least ten years prior to Despommier. Yeang proposes that instead of hermetically sealed mass produced agriculture structures, that plant life should be cultivated within open air, mixed-use skyscrapers for climate control and consumption (i.e. a personal or communal planting space as per the needs of the individual). This version of vertical farming is based upon personal or community use rather than the wholesale production and distribution of plant and animal life that aspires to feed an entire city. It therefore requires less of an initial investment than Despommier's proposed vision. However, neither Despommier nor Yeang are the conceptual "originators", nor is Yeang the inventor of vertical farming in skyscrapers.
Regardless of the diverse opinions and theories, vertical farming undoubtedly relies on the use of various physical methods and sustainable processes to become effective. Combining these varying technologies, devices, and sustainable processes in an integrated whole is necessary to make Vertical Farming a reality.
To learn more about vertical farming, we invite you to read "Feeding the Growing World Population Utilizing Vertical Farming" written by John Cornacchia.